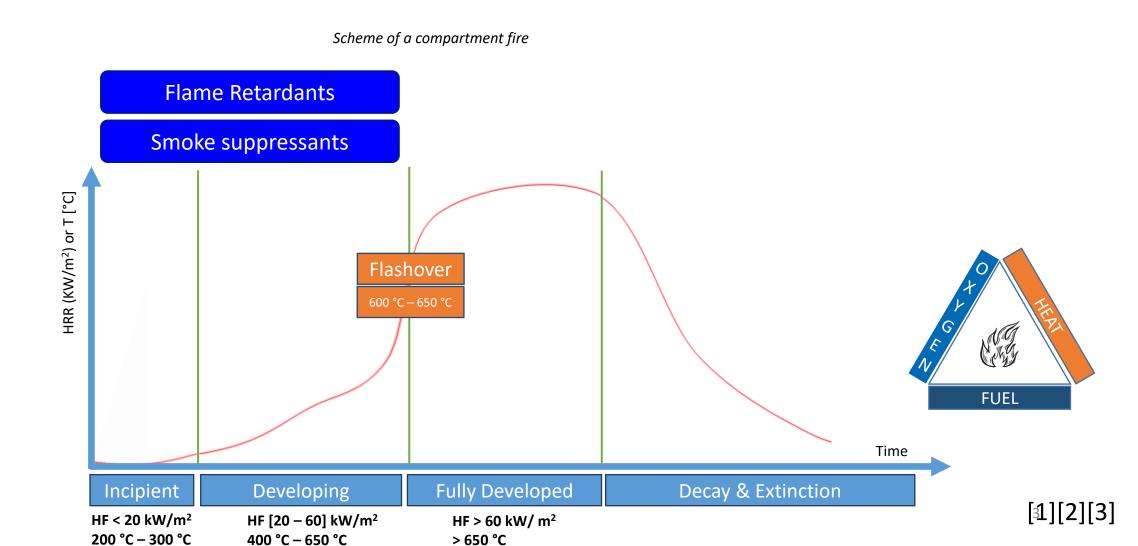


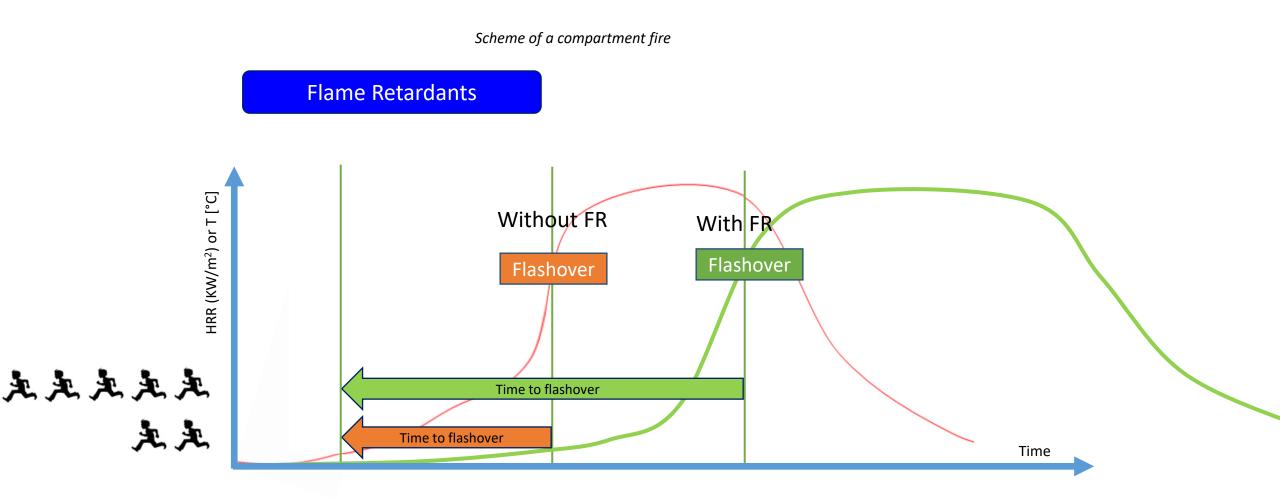
New sustainable flame retardants and smoke suppressants in unplasticized PVC compounds

3rd Annual Future of PVC Compounding, Production & Recycling Forum 14th-15th March, 2024

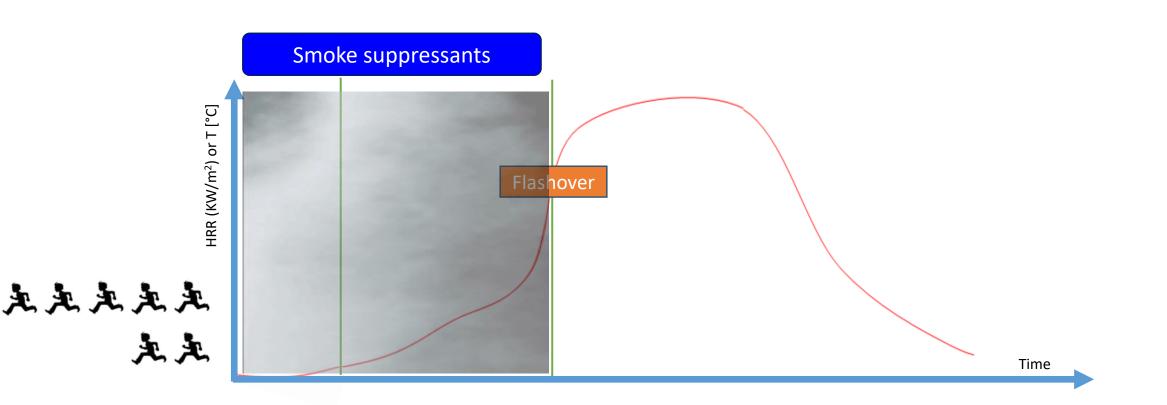
Francesca Delchiaro, Claudia Bandinelli, Iacopo Bassi, Gianluca Sarti


Reagens Group

- A privately owned, independent company, founded in the early 1950's.
- ➤ Consolidated group turnover of about € 250 million, underpinned by a solid financial structure.
- A global-scale manufacturer of specialty chemicals for PVC and other thermoplastics with headquarters in Bologna, Italy.
- The broadest PVC stabilizers product portfolio, manufactured in most of the key world regions, in modern, safe and efficient facilities.



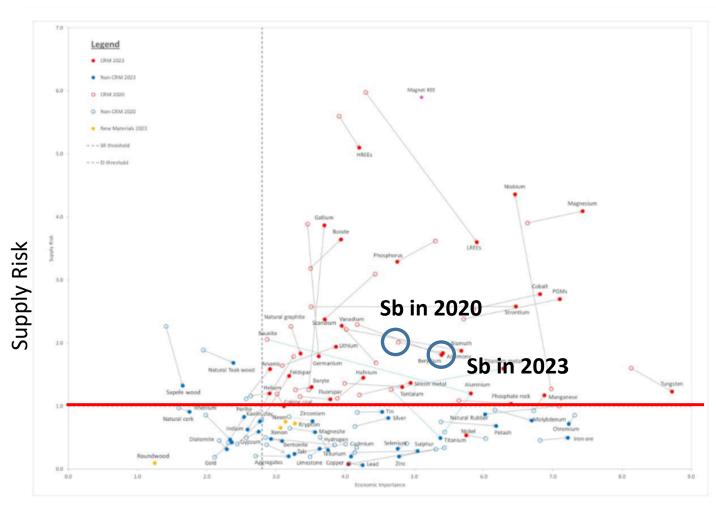
The aim of flame retardants and smoke suppressants


The aim of flame retardants and smoke suppressants

The aim of flame retardants and smoke suppressants

REAGENS

Scheme of a compartment fire



1) Bad classification

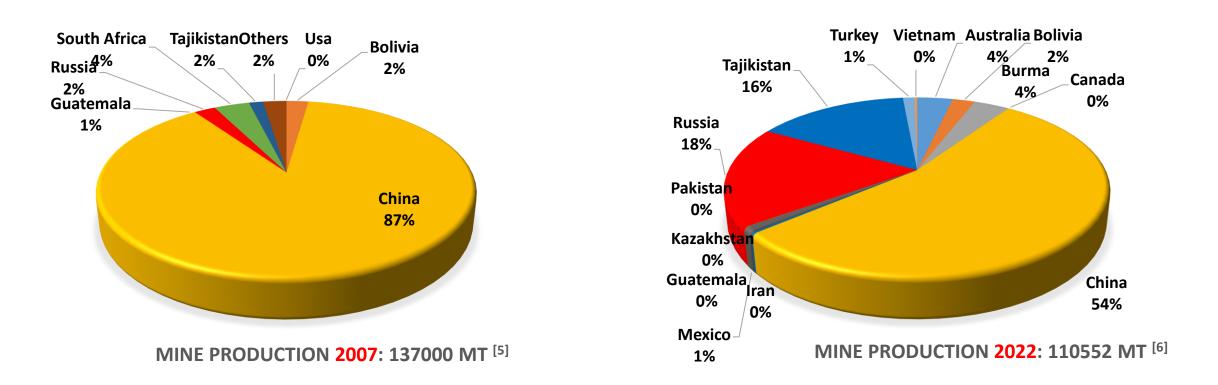
- In the EU, on 12/03/2020, ECHA asked the registrants for new toxicological tests to verify if the classification "H350 1b - May cause cancer by inhalation" can be met. [4]
- ATO is included with other FRs in the action "The use of PVC in the context of not toxic environment" (Risk of restriction is specific application).
- ATO (with others FRs) has been included in the "Regulatory strategy for flame retardants issued by ECHA". It regards halogenated and organophosphorus FRs, but in non halogenated plastics brominated FR are used in combination with ATO.

REAGENS

Drivers for Antimony Trioxide (ATO) substitution

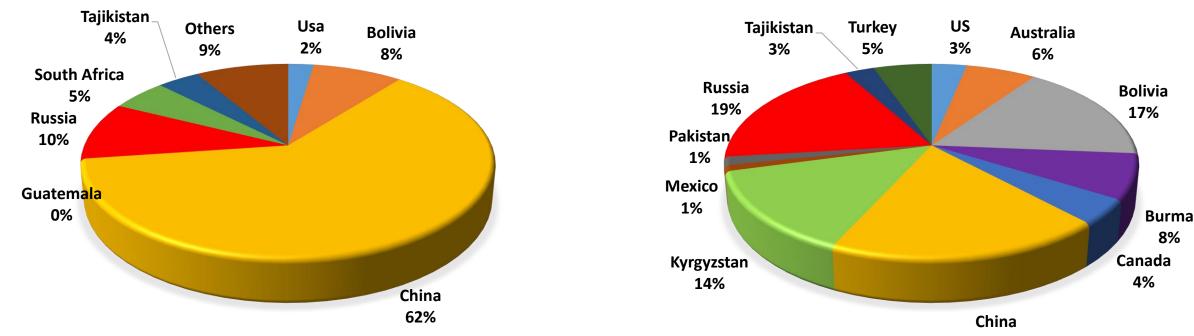
2) Critical supply risk

ATO is produced exclusively by unwrought Sb.


Sb is a metal with **vast economic importance** but with a **critical supply risk**.

China processes more than 70 % of worldwide Sb: reserves + importations of ores from Bolivia, Australia, and Russia.

Sb has been enlisted as critical raw material in the EU (**CRM reports** from 2011, 2014, 2017, and 2020, 2023) and it is present in 35 critical minerals list in the US.

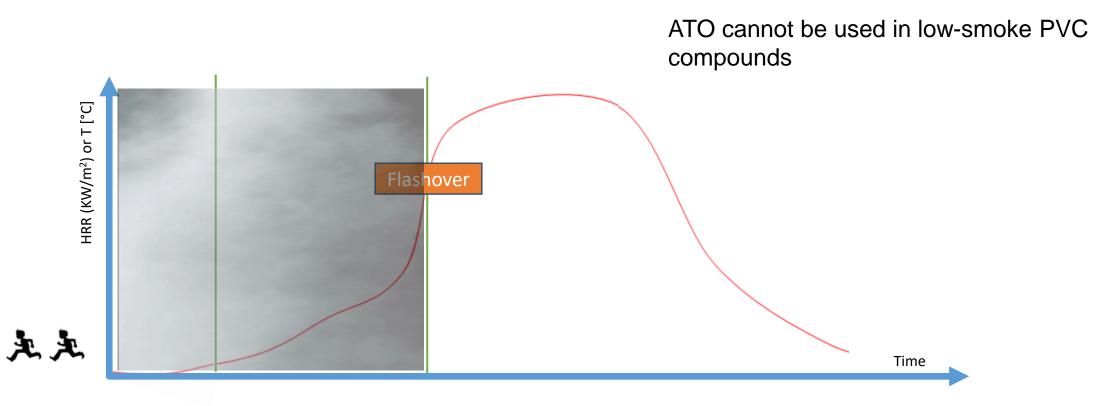

REAGENS

2) Critical supply risk

The **EU** and US are 100 / 90 % dependent by other countries.

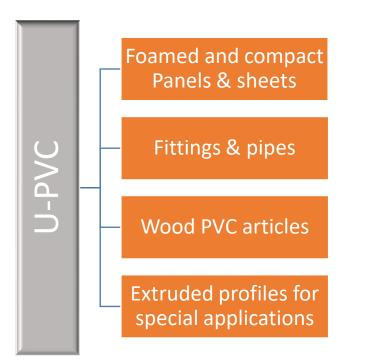
2) Critical supply risk

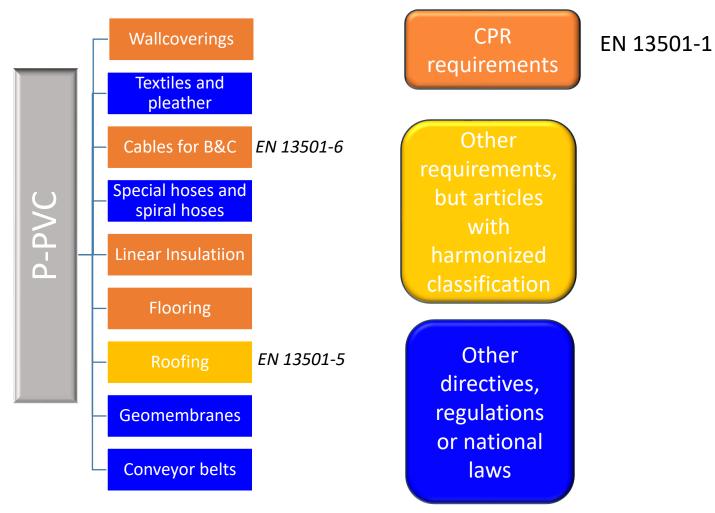
19%


RESERVES 2023: 2000000 MT [6]

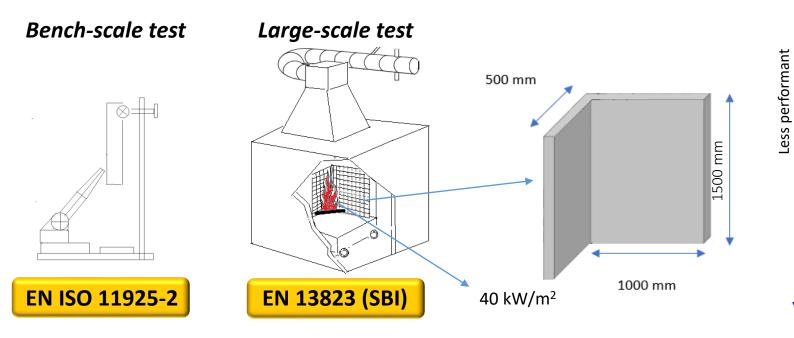
The European Union (EU) has no Sb reserves. US has reserves but no production yet.

RESERVES 2007: 3860000 MT [5]




3) Black and dense smoke

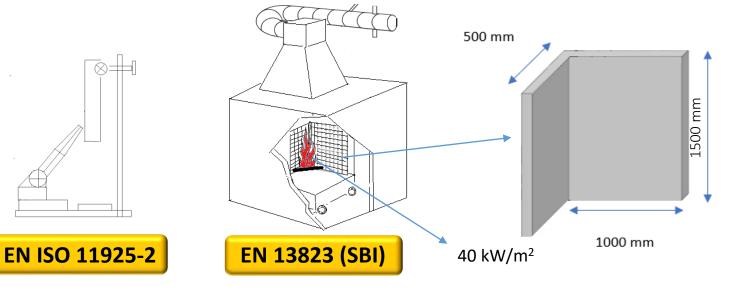
B&C Regulatory context



CPR Standards and requirements for PVC-U pannels

EN 13501-1 rules the classification of linear pipe thermal insulation (I), flooring (fl) and construction product excluding I or fl in terms of reaction to fire. This involves also U-PVC panels installed permanently in buildings.

The required standards for giving them a CPR classification are:


Class	Test method(s)	Classification criteria	Additional classification			
Al	ENISO 1182 (¹); and	$\Delta T \le 30^{\circ}C$; and $\Delta m \le 50\%$; and $t_f = 0$ (i.e. no sustained flaming)	12			
	ENISO 1716	$\begin{array}{l} PCS \leq 2.0 \text{ MJ.kg}^{-1} {}^{(1)}; and \\ PCS \leq 2.0 \text{ MJ.kg}^{-1} {}^{(2)} {}^{(2s)}; and \\ PCS \leq 1.4 \text{ MJ.m}^{-2} {}^{(3)}; and \\ PCS \leq 2.0 \text{ MJ.kg}^{-1} {}^{(4)} \end{array}$				
A2	EN ISO 1182 (¹); or	$\Delta T \le 50^{\circ}C$; and $\Delta m \le 50\%$; and $t_f \le 20_5$				
	EN ISO 1716; and	$PCS \le 3.0 \text{ MJ.kg}^{-1}$ (¹); and $PCS \le 4.0 \text{ MJ.m}^{-2}$ (²); and $PCS \le 4.0 \text{ MJ.m}^{-2}$ (³); and $PCS \le 0.0 \text{ MJ.m}^{-1}$ (³)				
	EN 13823 (SBI)	$\begin{array}{l} PCS \leq 3.0 \text{ MJ.kg}^{-1} \left(\overset{4}{} \right) \\ FIGRA \leq 120 \text{ W.s}^{-1}; and \\ LFS \leq edge of specimen; and \\ THR_{600s} \leq 7.5 \text{ MJ} \end{array}$	Smoke production(⁵); and Flaming droplets/ particles (⁶)			
В	EN 13823 (SBI); and	FIGRA ≤ 120 W.s ⁻¹ ; and LFS <edge and<br="" of="" specimen;="">THR_{600s} ≤ 7.5 MJ</edge>	Smoke production(⁵); and Flaming droplets/ particles (⁶)			
	EN ISO 11925-2(⁸): Exposure = 30s	Fs ≤ 150mm within 60s				
С	EN 13823 (SBI); and	FIGRA ≤ 250 W.s ⁻¹ ; and LFS <edge and<br="" of="" specimen;="">THR_{600s} ≤ 15 MJ</edge>	Smoke production(⁵); and Flaming droplets/ particles (⁶)			
	EN ISO 11925-2(⁸): Exposure = 30s	$Fs \le 150$ mm within 60s				
D	EN 13823 (SBI); and	FIGRA \leq 750 W.s ⁻¹	Smoke production(5); and Flaming droplets/ particles (6)			
	EN ISO 11925-2(⁸): Exposure = 30s	$Fs \le 150$ mm within 60s				
E	EN ISO 11925-2(⁸): Exposure = 15s	Fs ≤ 150mm within 20s	Flaming droplets/ particles (7)			
F	No performance determined					

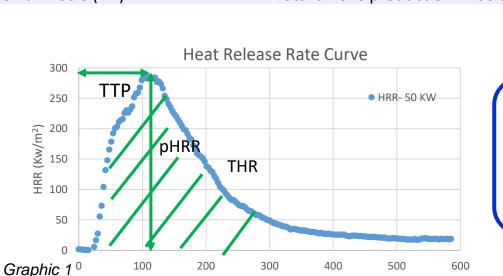
CPR Standards and requirements for class B s₂ d₀

	Class B	Flaming droplets	Smoke
EN ISO 11925-2 (exposure for 30 s)	FIGRA ≤ 120 Ws ⁻¹ LFS < edge of specimen THR _{600s} ≤ 7.5 MJ	d2 if paper in bottom is ignited (<i>if</i> not be evaluated with EN ISO 13823)	
EN ISO 13823 (test lasts 600s)	Fs ≤ 150 mm within 600 s	d0: no flaming droplets d1: 10 s of flaming droplets in 600 s d2: not d1, not d2	s1: SMOGRA ≤ 30 m ² /s ² ; TSP ≤ 50 m ² s2: SMOGRA ≤ 180 m ² /s ² ; TSP ≤ 200 m ² s3: if not d1 not d2

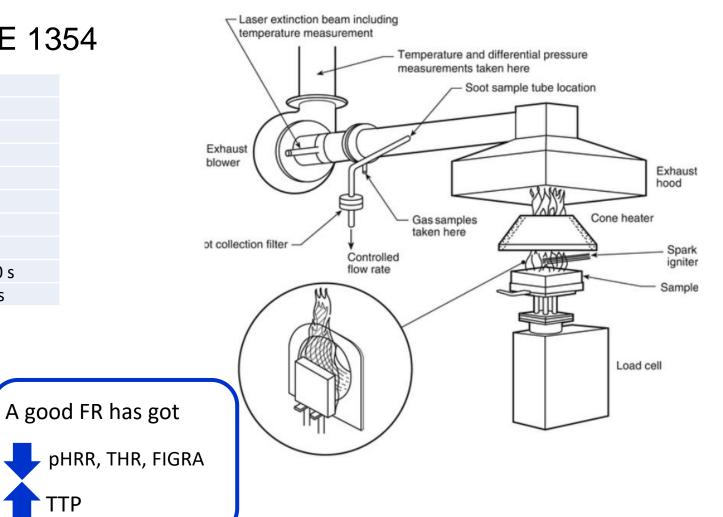
Bench scale test

Large scale test

Small lab scale tests for modeling the large scale tests

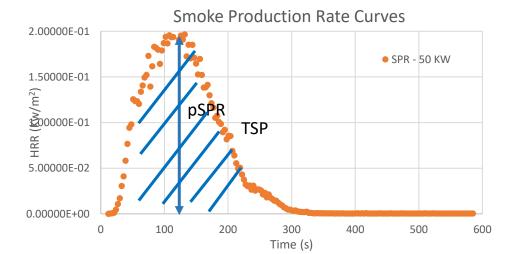

Cone calorimetry ISO 5660 / ASTM E 1354

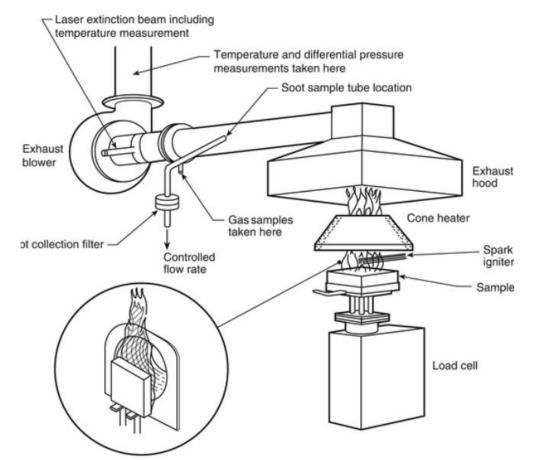
Heat evaluation	
peak HRR (kW/m²)	Peak of HRR curve
t peak HRR (s)	Time to peak
THR a 600 s (MJ/m²)	Total Heat Release
THR a 1200 s (MJ/m ²)	Total Heat Release
FIGRA (W/s)	Fire Growth Rate I
Smoke Emission	
peak SPR (m²/s)	Peak of SPR curve
TSP a 600 s (m²)	Total smoke produ
TSP a 1200 s (m ²)	Total smoke produ


REAGENS

Peak of HRR curve
ime to peak
otal Heat Release at 600 s
otal Heat Release at 1200 s
ire Growth Rate Index
Peak of SPR curve
otal smoke production at 600 s
otal smoke production 1200 s

TTP

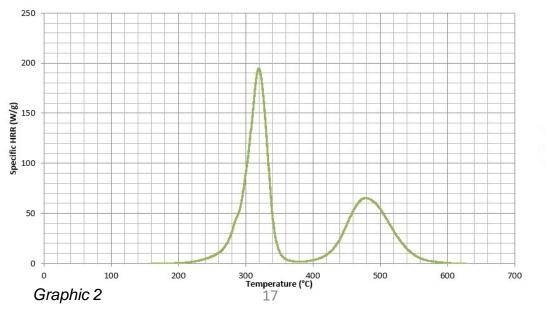

Time (s)

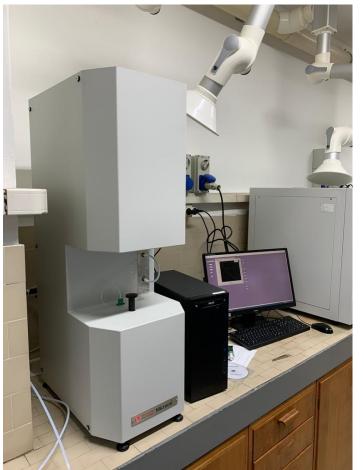


Small lab scale tests for modeling the large scale tests

Cone calorimetry ISO 5660 / ASTM E 1354

Heat evaluation		
peak HRR (kW/m²)	Peak of HRR curve	
t peak HRR (s)	Time to peak	
THR a 600 s (MJ/m ²)	Total Heat Release at 600 s	
THR a 1200 s (MJ/m²)	Total Heat Release at 1200 s	
FIGRA (W/s)	Fire Growth Rate Index	
Smoke Emission		
peak SPR (m²/s)	Peak of SPR curve	
TSP a 600 s (m²)	Total smoke production at 600 s	
TSP a 1200 s (m²)	Total smoke production 1200 s	
SMOGRA (m²/s²)	Smoke Growth Rate Index	




Small lab scale tests for modeling the large scale tests

Micro Combustion Calorimetry (MCC) according to ASTM D 7309

Heat evaluation	
FGC kW/g-K]	Fire Growth Capacity
ηc	Heat release capacity
Q max [kW/g-K]	Maximum specific heat release rate
Tmax [K]	Heat release temperature
hc [J/g]	Specific (total) Heat Release
Yp [g/g]	Yield of pyrolysis residue
hc gas [J/g]	Specific heat of combustion of fuel gases
hc [J/g] Yp [g/g]	Specific (total) Heat Release Yield of pyrolysis residue

REAGENS

MCC in Reagens Lab

MCC test apparatus A test specimen between 5 mg and 50 mg is weighted and pyrolyzed in a specific range of temperatures. The gases are collected and burnt in oxygen and the specific heat release rate curve is measured. That give us the possibility to measure parameters like heat release capacity and the fire growth capacity to evaluate the fire performances of the material

[10]

ATO free solutions for PVC-U

REAGENS

The product name of ATO alternative is: Reaguard B-FR/9100

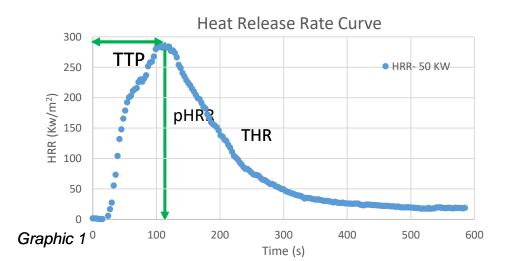
- 1) It is not classified according to CLP.
- 2) It has more stable price in comparison to ATO.
- 3) It is a flame retardant acting in condensed phase, but also a strong smoke suppressant.
- 4) It boosters thermal stability
- 5) It shows a good synergism with FR fillers as aluminum trihydroxide (ATH), and magnesium hydroxide (MDH) etc.

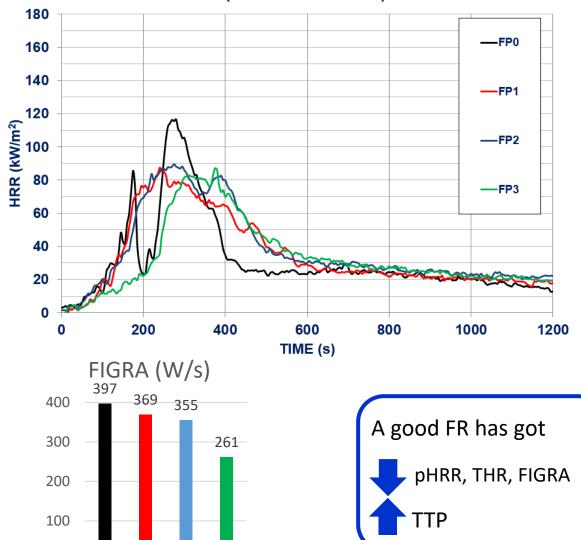
Formulations

Not Thermoformable Sheet	3 mm thickness	FP0	FP1	FP2	FP3
PVC NORVINYL S 6030	PVC Resin Suspesion K60	100	100	100	100
KANE ACE FM 50	Acrylic Impact Modifier	2,5	2,5	2,5	2,5
Realube ORI	Castor Oil	1	1	1	1,0
REAPAK G-LE/6010	Thermal Stabilizer	3,5	3,5	3,5	3,5
Kronos 2220	TiO2	0,8	0,8	0,8	0,8
HYDROCARB 95 T	Calcium Carbonate (Fine GCC)	15	-	-	-
Ecopyren 3,5 C	Magnesium hydroxide (Brucite)	-	15	15	15
RI002	Antimony Trioxide	6	-	-	-
Reaguard B-FR/9100	Flame retardant and smoke suppressant	_	6	9	11

Cone calorimetry results

		FP0	FP1	FP2	FP3
Heat flux	50 kW/m ²	ATO 6 phr	REA 6 phr	REA 9 phr	REA 11 phr


Heat evaluation					
peak HRR (kW/m²)	Peak of HRR curve	116	88	90	87
t peak HRR (s)	Time to peak	280	240	275	375
THR a 600 s (MJ/m ²)	Total Heat Release at 600 s	24,79	28,27	29,79	24,76
THR a 1200 s (MJ/m ²)	Total Heat Release at 1200 s	37,47	41,54	44,96	39,76
FIGRA (W/s)	Fire Growth Rate	397	369	355	261


Smoke Emission					
peak SPR (m ² /s)	Peak of SPR curve	0,136	0,084	0,070	0,066
TSP a 600 s (m²)	Total smoke production at 600 s	20,99	12,81	13,38	11,85
TSP a 1200 s (m²)	Total smoke production 1200 s	20,99	12,81	13,38	11,85
SMOGRA (m²/s²)	Smoke Growth Rate	6,57	< LOQ	< LOQ	< LOQ

Cone calorimetry results

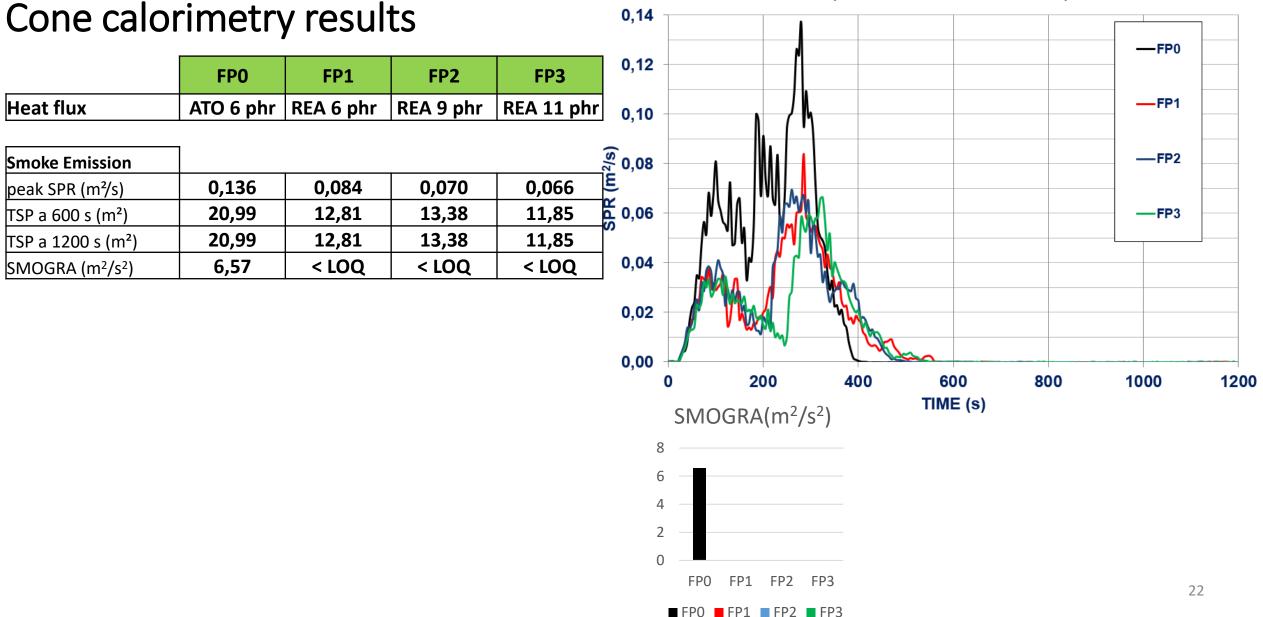
	FP0	FP1	FP2	FP3
Heat flux	ATO 6 phr	REA 6 phr	REA 9 phr	REA 11 phr

Heat evaluation				
peak HRR (kW/m²)	116	88	90	87
t peak HRR (s)	280	240	275	375
THR a 600 s (MJ/m ²)	24,79	28,27	29,79	24,76
THR a 1200 s (MJ/m ²)	37,47	41,54	44,96	39,76
FIGRA (W/s)	397	369	355	261

0

FP0

FP1


■ FP0 ■ FP1 ■ FP2 ■ F3

FP2

F3

HRR (Heat Release Rate)

SPR (Smoke Production Rate)

Main characteristics, heat stability & color hold

Comments

- ATO is under ECHA "magnifying glass". Parallelly, it will suffer more and more of shortage ↔ price fluctuations.
- Reagens is able to model the behavior of a fire on a small scale test (through CC and MCC) highlighting key
 parameters such as smoke emitted and heat released.
- REAGUARD B-FR/9100 can be a valid alternative to ATO both in terms of performance and of competitive price.
- The CC evidences that REAGUARD B-FR 9100 act in condensed phase 1) smothering the flame 2) reducing heat emission and especially 3) reducing smoke emission.
- A low smoke emission can do the difference b/w life/death: people can escape unharmed from the fire scenario or be rescued by firefighters.
- In the context of CPR, the reduction of smoke emission allows PVC-U B&C products to be in class s₁ or s₂.

Bibliography

[1] C. E. Wilkes, J. W. Summers, C. A. Daniels, Mark T. Berard. (2005). "PVC Handbook". (1st ed.). Hanser.

- [2] Hirschler, M. Interscience Communications, London, UK, 14–15 February 2006.
- [3] V. Babrauskas, R. D. Peakock. Fire Safety Journal, 1992, 18(3), 255 272.
- [4] LAST UPDATE: DECISION ON SUBSTANCE EVALUATION: ECHA dated 12/03/2020
- [5] Mineral Commodity Summaries; 2007
- [6] Mineral Commodity Summaries; 2023
- [7] Blu line and dots. ATO price calculated by Sb quotation + extra costs as AMC applies;
- [8] Green dots ATO prices applied by main players in Europe;
- [9] Red dots. Customer Interviews about ATO price level during visits, formalized in VR or telephone interviews to customers

[10] Bassi, I.; Delchiaro, F.; Bandinelli, C.; Mazzocchetti, L.; Salatelli, E.; Sarti, G. A New Perspective on Hydrogen Chloride Scavenging at High Temperatures for Reducing the Smoke Acidity of PVC Cables in Fires, IV: The Impact of Acid Scavengers at High Temperatures on Flame Retardance and Smoke Emission. *Fire* **2023**, *6*, 259. https://doi.org/10.3390/fire6070259